等腰三角形教学设计
教学设计要关注学生的主体地位和参与度,鼓励学生的主动学习和合作学习。它应该提供多样化的学习活动,激发学生的学习兴趣,培养学生的批判性思维和解决问题的能力。现在随着小编一起往下看看等腰三角形教学设计,希望你喜欢。
等腰三角形教学设计【篇1】
教学目标
(一)教学知识点
1.等腰三角形的概念.
2.等腰三角形的性质.
3.等腰三角形的概念及性质的应用.
(二)能力训练要求
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.
2.探索并掌握等腰三角形的性质.
(三)情感与价值观要求
通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.
教学重点
1.等腰三角形的概念及性质.
2.等腰三角形性质的应用.
教学难点
等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
[生]有的三角形是轴对称图形,有的三角形不是.
[师]那什么样的三角形是轴对称图形?
[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课
在上述过程中,我们可以得到ABC中AB = AC,这样就得到了一个等腰三角形.
[师]按照我们的做法,得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.
[师]同学们通过自己的思考来做一个等腰三角形.并在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.
[师]同学们来想一想.
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.
[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.
[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.
[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.
[师]你们说的是同一条直线吗?大家来动手折叠、观察.
[生齐声]它们是同一条直线.
[师]很好.现在同学们来归纳等腰三角形的性质.
等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成等边对等角).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作三线合一).
[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
[生甲]如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).所以C.
[生乙]如右图,在△ABC中,AB=AC,作顶角BAC的角平分线AD,因为
所以△BAD≌△CAD.所以BD=CD,BDA=CDA=BDC=90.
[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.
Ⅲ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
等腰三角形教学设计【篇2】
等腰三角形判定
教学目标
(一)教学知识点
探索等腰三角形的判定定理.
(二)能力训练要求
通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(三)情感与价值观要求
通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.
教学重点
等腰三角形的判定定理的探索和应用。
教学难点
等腰三角形的判定与性质的区别。
教具准备
作图工具和多媒体课件。
教学方法
引以学生为主体的讨论探索法;
教学过程
Ⅰ.提出问题,创设情境
1.等腰三角形性质是什么?
性质1 等腰三角形的两底角相等.(等边对等角)
性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.
(等腰三角形三线合一)
2、提问:性质1的逆命题是什么?
如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?下面我们来探究: Ⅱ.导入新课
大胆猜想:
如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.
[例1]已知:在△ABC中,∠B=∠C(如图).
求证:AB=AC. 教师可引导学生分析:
BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)
证明:作∠BAC的平分线AD. 在△BAD和△CAD中
??1??2,? ??B??C,
?AD?AD,? ∴△BAD≌△CAD(AAS).
∴AB=AC.
提问:你还有不同的证明方法吗?(由学生口述证明过程)
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角对等边)
4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.
下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.
(演示课件)
[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).
求证:AB=AC.
同学们先思考,再分析.(由学生完成)
要证明AB=AC,可先证明∠B=∠C.
接下来,可以找∠B、∠C与∠
1、∠2的关系.
(演示课件,括号内部分由学生来填)
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角对等边).
看大屏幕,同学们试着完成这个题.
(课件演示)
已知:如图,AD∥BC,BD平分∠ABC.
求证:AB=AD.
(投影仪演示学生证明过程)
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角对等边).
下面来看另一个例题.
(演示课件)
? 例
2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出
EA12DBCADBCM A
这个等腰三角形吗? a
b
作法:(1)作线段BC,使BC=a;
(2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;
(4)连结AB、AC,则△ABC即为所求等腰三角形。
例
3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由.(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?
Ⅲ.随堂练习
(一)课本P79
1、
2、
3、4.
Ⅳ.课时小结
1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。
2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。
3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。 Ⅴ.作业布置:
学力水平:必做42页 1------7题
选做 42页 8-----10题
4 12.
3.1.2 等腰三角形判定
等腰三角形教学设计【篇3】
一、教学目标
1.知识与技能
(1)理解公理,能够举一反三,证明等腰三角形的性质定理;
(2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;
(3)熟悉证明的基本步骤和书写格式. 2.过程与方法
2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理.发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平.
3.情感态度及价值观
使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯.
二、教学重点、难点
重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法.
难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求.
三、教具准备
(两个等腰三角形、彩色粉笔、教案、尺子)
四、教学过程
1.复习旧知,引入新知
(1)请同学们回忆判定三角形全等的公理有哪些? ? 公理:三边对应相等的两个三角形全等(SSS). ? 公理:两边及其夹角对应相等的两个三角形全等(SAS). ? 公理:两角及其夹边对应相等的两个三角形全等(ASA)
(2)推论呢?
两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).
(3)根据全等三角形的定义,我们可以得到 定理:全等三角形的对应边相等、对应角相等.
学生讨论:等腰三角形有哪些性质吗? 根据等腰三角形的性质给予证明.
设计意图:为学生对本节课证明等腰三角形的定理作铺垫. 2.新授课
猜想:如果一个三角形是等腰三角形,那么这个三角形的两个底角有什么关系呢?如何证明呢?
(1) 画出图形;
(2) 根据图形写出已知求证;
(3) 写出推理过程.
已知:如图1-1,在△ABC中,AB=AC. 求证:∠B=∠C.
分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线).
设计意图:锻炼学生的动手操作能力.
证明:如图1-2,取BC的中点D,连接AD.
(已知),?AB?AC ?在△BAD和△CAD中,?BD?CD (已作),
?AD?AD (公共边),?∴ △BAD ≌ △CAD (SSS).
∴ ∠B=∠C (全等三角形的对应角相等). 你还有其他证明方法吗?与同伴交流.
作出底边上的高或作出顶角的平分线,大家可以自己证明.
3.巩固练习
在 △ ABC中,AB=AC.
(1)若∠ A=40°, 则∠ C 等于多少度?
(2)若∠B= 72°,则∠ A 等于多少度?
设计意图:加强学生对等腰三角形定理的认识.
4.引出推论
在图1-2 中,观察AD还具有怎样的性质?为什么?由此能得到什么结论? 我们作出了底边上的中线,已证明△BAD ≌ △CAD.
所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等).因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线.
由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合.(简称“三线合一”)
5.随堂练习
(1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2 cm,则DC=___cm, BC=___cm.
(2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD. ①求证:△ABD是等腰三角形. ②求∠BAD的度数.
图1-4
6.课堂小结
等腰三角形的性质定理:
等腰三角形的两个底角相等(简写成“等边对等角”). 等腰三角形顶角的平分线平分底边并且垂直于底边.
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.简称“三线合一”.
7.教学反思
等腰三角形教学设计【篇4】
一、教材分析
《等腰三角形》是冀教版八年级数学第十五章第五节的教学内容,等腰三角形这节课在教学中起着比较重要的作用,它是对三角形的性质的呈现。利用轴对称变换,探索等腰三角形的性质是本节课的主要内容。在以往的教科书中,等腰三角形的有关内容一般安排于介绍三角形的内容之中,利用三角形的全等研究等腰三角形的性质,而本书中,等腰三角形的有关内容安排在轴对称变换之后,在掌握了轴对称的相关性质之后,通过实验、观察,发现等腰三角形的性质,再利用三角形的全等的知识给以证明
二、教学目标
1.知识与技能:了解等腰三角形的概念,探索并掌握等腰三角形的性质;
2.数学思考:使学生经历通过观察、实验、探究、归纳、推理、证明的认识图形的全过程,上实验几何与论证几何有机结合;
3.情感态度与价值观:通过剪纸等活动,培养学生的实验意识和探索精神,使学生进一步认识到数学与现实生活的密切联系,感受数学的严谨性以及结果的确定性。
三、教学重、难点
1.重点:等腰三角形的性质
2.难点:“等边对等角”的证明
四、教学方法
动手体验、小组、讨论、合作、交流、探究验证师生互动
五、教、学具
1.教具:长方形纸,剪刀,幻灯片。
2.学具:长方形纸,剪刀。
六、教学媒体:投影仪
七、教与学互动设计:
一、联系生活实际,创设问题情境。激发学生兴趣,导入新课
师:同学们:我们在剪纸中欣赏了轴对称图形带给我们的享受,中外建筑中也洋溢着轴对称图形的艺术气息,国旗及各种标志中轴对称图形又向我们展示着它独特的社会含义,而我们亲自动手实践中又体会了轴对称图形带给我们的二次惊喜!今天老师给大家带来了这个(展示折纸-----飞机),你们喜欢折纸吗?一页普普通通的纸经过我们灵巧的双手就可以变成飞机、小船和各种有趣的动物建筑特等,其实通过折纸我们还可以发现很多数学知识!下面就让我们折一折,剪一剪,看看会有什么发现?
学生活动:要求:(1)拿出事先准备好的长方形纸片,对折,使两部分重合。
(2)对折出一角,沿折痕撕开或剪开,你得到了什么图形?
师:板书: 15.5 等腰三角形
师:为了更好的掌握这节课的知识,老师把咱们班分了六组,设计了几个环节来完成,希望同学们踊跃的参与各个环节中来,好不好?
第一环节:精彩回放《投影1》
要求:全班分六组,各组在最短的时间各显其能,展示自己的才华回答方式为抢答
问题:1、在等腰三角形ABC中,请你介绍
一下哪个是等腰三角形的腰、底边、顶角和底角?
2、你知道等腰三角形的哪些知识?
给同学们介绍一下?
(1、三角形的两边之和大于第三边2、内角和为180度等)
师:各组同学在这个环节中表现的非常出色,连老师也为你们的成功感到骄傲,希望下一个环节再接再励。(教师给予鼓励性的评价)
在初中研究一个图形的性质,一般都从对称性、角、边、角平分线来探究,为了使同学们都成为探究者,请进入第二环节(投影)
第二环节:探究等腰三角形的边、角
师:拿出剪好的等腰三角形观察说出边和角的特点?你是怎样得到的?各小组谈见解
生:1、等腰三角形两腰相等 2、等腰三角形两底角相等
几何格式:∵ AB=AC ∴∠B=∠C
学生活动:为了培养学生的思维,启发他们从1、度量法2折叠法、3证全等法、三个方面来验证等腰三角形两底角相等这一性质
师:利用等腰三角形的边和角的性质可以帮助我们解决一些简单的计算题和证命题《投影2》
要求:各组出一名同学回答,答对给各组加1分
1、如果等腰三角形的一个底角75°那么它的顶角等于( )度?
2、如果等腰三角形的一个角为90°那么其余两角( )度?
3、如果等腰三角形的一个角为100°那么其余两角( )度?
4、两边长为10和8,则第三边长是( )?
学生总结解题方法:要求:抢答并加分
(1)等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180°
(2)推论:等边三角形三个内角相等,每一个内角都等于60°(板书)
结论:在等腰三角形中1、当一内角是锐角时两种情况。2、直角或钝角时一种情况
师:各组同学表现的非常出色,解题的技巧总结的很好,让我们带着胜利的喜悦竟如第三个环节
第三个环节:探讨等腰三角形的对称性
学生活动:拿出剪好的等腰三角形猜想:
1、 等腰三角形是轴对图形吗?它有几条对对称轴?
2、 请同学们动手画出顶角平分线、底边的高线、底边的中线有什么特征?
学生回答:1、 等腰三角形是轴对称图
第四个环节:智者闯关
规则:各组可抢答比一比,赛一赛哪一队的同学能够顺利过关
现在是不是感觉数学网为大家准备的初二上册数学等腰三角形教学计划很关键呢?欢迎大家阅读与选择!
等腰三角形教学设计【篇5】
教学目标
重难点
1、知识与技能
(1)理解掌握等腰三角形的性质.
(2)运用等腰三角行的性质进行证明和计算.
(3)发展合情推理,培养观察、分析、归纳问题的能力.
2、过程与方法
通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.
3、情感态度与价值观
(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.
(2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.
(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.
4、教学重点:等腰三角形的`性质的发现和应用.
5、教学难点:等腰三角形性质的证明
教学过程
(交互式白板使用功能)
1、情境创设
问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。
2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;
带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。
3、动手操作
(1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?
(2)上述过程中得到的
问题(1):△ABC有什么特点?
问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。
问题(3)让学生各抒己见的基础上介绍自己的想法
要关注学生是否积极参与到活动中来。
动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习
等腰三角形教学设计【篇6】
一、说教材
1、教学主要内容、前后联系、地位和作用
本节课的内容是冀教版义务教育课程标准实验教科书《数学》八年级(上)§15。5等腰三角形第一课时,主要内容是学习等腰三角形的两条性质:“等边对等角”和“三线合一”。
本节课是在学生已经学习了三角形的有关概念和“认识轴对称图形”的基础上接着学习的。这节课的内容不仅是对前面所学知识的运用,也是今后证明角相等、线段相等及直线垂直的重要工具,它在教材中处于非常重要的地位。
2、教学目标及依据
根据学生认识基础及教学内容的特点,依据《数学课程标准》确定本节课的教学目标为:
(1)使学生了解等腰三角形的有关概念,掌握等腰三角形的性质,
(2)通过折纸实验探索等腰三角形的性质,让学生进一步经历观察、实验、归纳、推理、交流等活动,体验数学证明的必要性,培养学生数学说理的习惯。
(3)通过例题的教学,学会利用代数法求解几何问题,培养学生学数学应用数学的意识。
(4)了解等边三角形的概念并探索其性质
3、教学重难点及依据
等腰三角形的性质在今后应用较广,但“三线合一”这一性质的条件和结论容易混淆,学生不会灵活运用。因此本节课的重难点是:
(1)重点:等腰三角形等边对等角性质是本节教学的重点。
(2)难点:等腰三角形“三线合一”性质的灵活运用。
二、学情分析
学生以前接触过等腰三角形有关知识,并且学生已经历画图方法感知“三线合一”这一性质,所以等要三角形的这两个性质学生可以通过折叠发现出来,但对“三线合一”中的“三线”指代学生可能出现混淆情况,且对“三线合一”这一性质“三线合一”这一性质不够重视,但它是本节课的难点又是今后用得较广泛的性质之一。由于本班中学生各科的基础都较差,合作、交流的意识不强,不敢提问,不善于探索与实践,所以教师要给予适当的引导、启发,要多加激励和鼓励。
三、说教法、学法
初中生的观察、记忆、逻辑思维等能力逐步增强,他们能够在观察中注意到事物的细微处,具备了一定的逻辑推理能力和抽象地表达事物本质特征的能力,模仿力强,但七年级的学生思维往往要依赖于直观具体的形象,而学生刚学过轴对称图形,对轴对称图形的分析想对比较好。
根据学生这一年龄特征和这节课的内容特点,在教师的组织、引导、点拨启发下,采用直观教学法,探究、发现的教学方法,让学生主动参与,积极动手、动脑、动口,操作实验、直观感知、自主探索、合作交流,通过师生互动、情感交流,培养学生多观察、动脑想、大胆猜的研讨式学习模式,使学生在自主探索和合作交流中理解和掌握本节课的内容。
教具准备:多媒体计算机、课件、投影机。
学具准备:三角板、透明纸片、剪刀、铅笔。
四、说教学程序
(一)复习回顾,引入新课
1、因为已经学过有两边相等的三角形是等腰三角形,所以让学生在事先准备好的半透明纸上画一个等腰三角形,并标上字母A、B、C。
选一位学生画好的等腰三角形投影到大屏幕上,结合学生的图形介绍等腰三角形的一些有关概念。
〔设计意图〕从一开始就提供给学生动手操作的空间和时间让他们在无意中,了解等腰三角形的一些概念,同时觉得有一种轻松感。
3、让学生做练习,在已知的等腰三角形ABC中,画底边BC上的中线和高以及顶角的平分线,并量一量课本图中两个底角的度数。
〔设计意图〕让学生通过画图、测量,先整体感知等腰三角形“等边对等角”,“三线合一”这两条性质,然后再经过后面的动手、动脑折叠等腰三角形的实验来验证等腰三角形的性质。使学生初步体会到:观察实验的方法可以给我们带来一个直观形象的数学结论。
(二)动手实验,合作探究
1、让同桌或前后的同学互相检查对方刚才所画的三角形是否“等腰”。然后把各自画好的等腰三角形剪下来,并把纸片对折,让两腰AB、AC重叠在一起,折痕为AD。最后问同学:你发现了什么现象?你能用自己的语言说出来吗?
〔设计意图〕通过富有激励和挑战的语句来激发、引导学生。
2、留给学生充分的时间观察、思考、交流,然后互相补充,并请学生起来发言,同时老师用多媒体演示模型,并在大屏幕上显示如下内容:
发现:(1)三角形是轴对称图形,折痕AD所在的直线是它的对称轴。
(2)∠B=∠C。
(3)BD=CD,AD是底边上的中线。
(4)∠ADB=∠ADC=90°,AD为底边上的高。
(5)∠BAD=∠CAD,AD为顶角的平分线。
3、由学生用文字归纳结论(2),教师纠正并投影:等腰三角形的两个底角想等。(简写成“等边对等角”)
师问:你能用数学语言表达这句话吗?
学生:讨论交流、发言。
投影:在△ABC中,因为AB=AC,所以∠B=∠C。
4、问学生你能用一句话来归纳结论(3)(4)(5)吗?
教师提示:可联系开始所复习的练习(画等腰三角形“三线合一”),接着用多媒体演示“三线合一”动画。
投影:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。(简称“三线合一”)
〔设计意图〕通过直观感知、操作确认,有助于培养学生的合情推理和演绎推理能力,体验数学学习的乐趣,逐步积累数学活动经验,经历自主探索和合作交流的过程,形成积极的学习态度和情感。
5、对比练习(补充):画一个等腰三角形的一个底角的平分线及该角所对的中线和高,看看他们是否重合(即是否有“三线合一”这一性质)。
6、大家谈谈,由同学们互相讨论了解概念并探索其性质。积极发挥学生的能动性。
(三)初步应用,巩固拓展
例1已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。(投影显示,P83例1)
生:交流、讨论、口述。
师:板书解题过程(在黑板上写)
解:因为AB=AC。
所以∠C=∠B=80°
又∠A+∠B+∠C=180°
所以∠A=180—80—80 = 20°
引申练习(补充):已知在△ABC中AB=AC,∠A=30。求∠B和∠C的度数。(投影显示)
生:交流、讨论、并写在纸上。
师:巡视,选两位学生板演并讲评。
小结(老师问、学生答):
在等腰三角形中,
(1)已知一个角,就能求另外两个角。
(2)顶角+2×底角=180°
(3)0°
师问:在一般的三角形中,已知一个角能求另外两个角吗?为什么等腰三角形可以?
生答:因为隐含一个条件:两个底角相等——等边对等角。
例2。建筑工人在盖房子的时候,要看房梁是否水平,可以用一块等腰三角板放在梁上(如图),从顶点系一重物的绳正好经过三角板底边中点,房梁就是水平的,你能说出为什么吗?(投影显示例2和图形。)
学生思考,分组讨论,交流并回答。
教师纠正,并投影显示解答。
解:系重物的绳子正好经过等腰三角形的底边上的中点,根据“三线合一”可以知道这条绳子也垂直于房梁,故房梁是水平的。
〔设计意图〕通过本例让学生对“三线合一”这一性质进一步得到巩固,也让学生体验到数学知识在现实生活中的应用,培养学生的应用意识。
(四)反馈练习
课本P65练习。1、2、3
补充:如图,在△ABC和△ABD中。因为,AB=AC,所以,∠C=∠D。对吗?
〔设计意图〕让学生注意“等边对等角”,是在同一个三角形内用的。
(五)归纳小结
由师:今天这节课即将结束,你能告诉老师你的收获吗?
学生相互归纳和补充(幻灯片显示):
1、等腰三角形的两条性质:“等边对等角”,“三线合一”。
2、已知等腰三角形一个角(或一条边)时,要注意分类讨论,判断是顶角还是底角(是腰还是底边)。
3、注意:等边对等角是指在一个三角形内用的。
4、等边三角形的性质。