圆的认识教学设计10篇

|育祥

教学设计是教师根据教学目标和学生需求,制定具体教学计划和教学活动的过程,旨在有效地组织和引导学生的学习。现在随着小编一起往下看看圆的认识教学设计10篇,希望你喜欢。

圆的认识教学设计10篇

圆的认识教学设计(篇1)

【教学内容】

义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。

【教学目标】

1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

3、通过观察、操作、想象等活动,发展空间观念。

【教学重、难点】

1、圆的特征。

2、画圆的方法。

【教具、学具准备】

1、三角尺、直尺、圆规。

2、教学课件。

【教学设计】

一、观察思考。

1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。

2、观察这些图形与我们以前学过的图形有什么不同?

生活中还有哪些物体的面是圆形?

做套圈游戏,哪种方式更公平?

二、画一画。

你能想办法画一个圆吗?

用手比划着画圆。

用一根线和一支笔画圆。

用圆规画圆。

2、教学用圆规画圆的`方法。

三、认一认。

学生用圆规画一个圆。

讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。

告诉学生半径和圆心。

四、画一画、想一想。

要求学生画一个任意大小的圆,并画出它的半径和直径。

观察比较得知:圆有无数条直径,无数条半径。

在同一个圆内直径都相等,半径都相等。

以点A为圆心,要求学生以A为圆心画两个大小不同的圆。

画两个半径都是2厘米的圆。

五、讨论。

圆的位置与什么有关系?

圆的大小与什么有关? 使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。

使学生在动手操作中体会圆的本质特征。

让学生进一步体会圆的本质特征。

让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。

六、观察与思考。

1、播放课件。

动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。

思考:车轮为什么是圆形?

操作:

用硬纸板分别剪一个圆形、正方形、椭圆形。

小组合作描出运动轨迹。

七、练一练。

课本练一练题目。

八、全课小结。

【教学反思】

圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。

圆的认识教学设计(篇2)

1. 例1。

编写意图

例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。

教学建议

教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。

2. 例2及“做一做”。

编写意图

例2教学圆的认识和画法。

圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。

教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。

“做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。

教学建议

教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。

教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的.,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。

3. 例3及“做一做”。

编写意图

例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。

教学建议

教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。

“做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。

4. 关于练习十四中一些习题的说明和教学建议。

第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。

第3题,使学生知道两端都在圆上的线段,直径是最长的一条。

第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。

第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。

第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。

圆的认识教学设计(篇3)

教学目标:

(1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

(2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

教具:

圆规、直尺、小球、圆形纸片、磁铁、双面胶。

学具:

圆形物体、白纸、水彩笔、直尺、圆形纸片。

教学过程:

一、初步感受。

(1)自然界中的圆

同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

(2)生活中的圆。

在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

(圆形的钟面。)

(圆形的光盘。)

(圆形的瓶盖、圆形的茶叶桶盖等)

注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。) 车轮是圆的。这是车轴,这是钢丝。(电脑演示)

小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

二、探索圆的特征。

1、画车轮简图。

(1)抽象

为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

(2)画图。

这是一个车轮简图,你能很快地画一个车轮简图吗

拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

你是怎么画车轮上的圆的呢?

(依靠圆形物体画圆)

(直接用手画圆)

(用圆规画圆)

(3)介绍圆规画圆。

圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

(1)先把圆规的两脚分开,定好两脚间的长度。

(2)把有针尖的一只脚固定在一点上。

(3)把另一只脚旋转一周,就画出了一个圆。

如果圆规的两脚之间的距离大一点,那画出来的圆就(大),那这样画出来的圆就(小)。

你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

2、原型启发,进行猜想。

(1)观察、比较。

同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

请把你的猜想和同桌交流一下。

(2)交流、汇报。

你有哪些猜想呢?

(圆形物体可以滚动,没有角)

(圆都有一个中心)

(圆的中心到圆的边缘的距离相等)

(3)小结:

刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

3、验证

(1)下面我们来验证一下。

先来验证第一个猜想。

你感觉圆会有中心吗?

会有有几个中心呢?

会有两个中心吗?

圆的中心在哪儿呢?

你能准确地找到这个圆形纸片的`中心吗?

请大家拿出事先剪好的圆片。自己想办法来找一找。

找到了吗?你是怎样找到的呢?

(用尺量的。)

(用圆规找的。)

(用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母o表示。(圆的中心改成圆心)。

(3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等) 因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

这里的曲线上我们给它个名称叫圆上。(改成圆上)

圆心到圆上的距离相等。

这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

真的都相等吗?

你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。) 巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

学生介绍验证的方法。

量的方法;

折的方法。

你折了几次?

折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

(4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

4、进一步体会圆的本质。

下面我们来做个游戏,进一步感受一下圆的特征。

(1)线上的小球转动。

我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

我们用电脑模拟。

(2)橡皮筋上的小球转动。

我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

我们用电脑模拟一下;

小球划出的是什么图形?

(电脑演示)是圆吗?

为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

(因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

5、认识半径、直径。

刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本p116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

有哪些概念啊?

什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

有几条半径呢?为什么?这无数条都相等吗?

什么直径?那你在圆片上画一条半径,用小写字母d表示。

有几条半径呢?为什么?这无数条都相等吗?

直径和半径之间有什么样的关系呢?

判断直径(电脑演示)

5.判断题:

(1)从圆心到圆上任意一点的距离都相等。

(2)所有半径都相等,所有的直径也相等。

(3)半径3厘米的圆比直径5厘米的圆要小。

(4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

三、解释与运用。

大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

为了更好地解释这一现象,我们来做一个对比实验。

现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

(因为第一种车上,车轴到地面的距离不变)

(在第二种车上,车轴到地面的距离在变化。)

为什么在圆形车轮中,车轴到地面的距离始终不变化?

(因为在同一个圆里,所有的半径都相等。)

看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。

圆的认识教学设计(篇4)

一、教学内容:

人教版《义务教育课程标准实验教科书.数学》六年级上册56—58页

二、教学目标

1、在具体的情景中使学生认识圆,知道圆各部分的名称。

2、通过观察,操作等活动探究圆的特征,理解在同一圆内直径和半径的关系。

3、学会使用圆规,掌握用圆规画圆的方法。

4、在观察操作过程中培养学生的创新意识和自主探究能力。发展学生的空间观念。

三、教学重难

教学重点:认识圆的特征,学会用圆规画圆。

教学难点:明确圆心与圆的位置之间的关系,半径与直径、半径与圆的大小之间的关系。

四、教学具准备

教具准备:多媒体课件、圆规、直尺、圆片。

学具准备:圆规、直尺、圆片。

教学过程

五、教学过程

(一)情景创设,激情导入

同学们喜欢骑自行车吗?(喜欢)那么你们一定知道自行车车轮是什么形状的?为什么车轮要设计成圆形?(出示图片)

为什么车轮设计成圆呢?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识

[设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。

(二)动手操作,探究新知

1、联系生活,理解概念

(1)师:除了车轮是圆形的,同学们在日常生活中还看见过哪些物体是圆形的?

(2)学生举例。

(3)老师也收集了一些关于圆的图片:请大家看屏幕(课件演示)。

(4)师:同学们我们不仅用圆来装扮我们的生活,还将圆的一些特征巧妙的用于生活。

(三)操作探究,认识圆各部分的名称及圆的特征。

1、折一折,认识圆心。

(1)让学生用老师准备好的圆形图片,对折后打开,换个方向后再对折打开,看有几条折痕,相交吗?再折几次,说说你发现了什么?学生相互交流自己的发现。(所有的折痕都相交于一点,这一点在圆的中心)

(2)教师揭示:这一点我们把它叫做圆心,用字母“ο”表示。

(3)课件演示后,学生自己在圆上标出圆心。

2、连一连,认识半径、直径

(1)连接圆心和圆上任意一点的线段叫做圆的半径,用字母“γ”表示。

(2)课件演示。

(3)让学生找出定义中的关键词

(4)教师解释圆上、圆内、圆外

(5)学生在自己的圆里画出一条半径,并用字母标出。

(6)想一想:同一个圆里能画出多少条半径?这些半径的长度会有什么关系呢?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条半径,所有的半径的长度都相等。

(7)通过圆心并且两端都在圆上的线段叫做圆的直径,用字母“d”表示

(8)课件演示

(9)学生互相指一指直径,并在自己的圆里画出一条直径。

(10)想一想:同一个圆里有多少条直径,所有的直径的长度都相等吗?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条直径,所有的直径的长度都相等。

3、比一比,掌握直径与半径的关系

(1)刚才我们认识了圆心、半径、直径以及半径、直径的特征,那么在同一个圆里半径和直径之间会有什么关系呢?

(2)学生自己先动手测量、比较,然后小组探讨交流。

(3)小组代表发言,小组一:我们通过测量发现直径的长度是半径的2倍,小组二:我们把直径对折过去发现刚好是两个半径的长度,所以认为直径是半径的2倍。《圆的认识》教学设计 相关内容:《圆柱的体积》导学案《圆柱的表面积》教学反思把握教材特点优化课堂教学---- 谈分数乘法的`教学人教版数学六上教案 百分数 折扣复习分数乘法的意义和计算《圆柱的表面积》教学设计圆柱表面积教学案例圆柱的体积教学设计查看更多>> 小学六年级数学教案

(4)教师归纳小结:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示是:d=2r或r=d/2

[设计意图:这一环节主要以动手操作为主线,通过折一折、量一量、指一指、比一比等活动,让学生自主参与,合作探究、分组交流,给予学生充分展示自我和展开探究活动的空间,让学生在自主探究中发现新知,学生学习的过程是感知的过程,是体验的过程,是感悟的过程,学生在感知、体验、感悟中发现新知,掌握新知。]

(四)动手操作,掌握圆的画法

1、认识圆规,教师介绍圆规各部分的名称。

2、教师在黑板上示范画圆

3、学生用圆规画圆,指名学生演示画圆,并让学生边演示边归纳画圆的步骤和方法。

4、画一个半径是3厘米的圆,并用字母标出圆心、半径和直径。画完后同桌互相检验。

5、按要求画圆,并观察你发现了什么?(画3个同心圆,3个大小不等的非同心圆)让学生通过观察、讨论、比较归纳:圆心确定圆的位置,半径决定圆的大小。

[设计意图:老师先示范画圆接着让学生试着用圆规画圆,画圆之后,让学生共同概括规律,是从感性到理性的一种提高。同时让学生反复画圆之后,结合画圆的过程体会圆心和半径的作用,便于学生深化对圆心和半径的认识。]

六、实践应用,深化知识

(1)、辨一辨。(对的在括号里打“√”,错的在括号里打“×”)

1、两端都在圆上的线段叫做直径。( )

2、画一个直径为4厘米的圆,圆规的两脚之间的距离应是4厘米。( )

3、半径2厘米的圆比半径1.5厘米的圆大。( )

4、圆的半径是射线。 ( )

5、圆心到圆上任意一点的距离都相等。 ( )

(2)、回放上课时车轮为什么是圆形的动画,谁能应用今天所学的知识解释车轮为什么要做成圆形?为什么车轴要装在圆心上?

(3)、下面投球比赛中,那种游戏方式最公平?

队列3

队列2

队列1

[设计意图:通过拓展训练,进一步巩固所学的知识,同时了解学生对知识掌握情况。让学生亲眼看见圆的知识的应用,真正体会到数学知识就在身边。]

七、总结新知 畅谈收获

本节课你学习了什么知识?你有什么收获?

师:其实生活中的很多现象都象圆一样蕴含着丰富的数学规律,需要我们在不断的探索中来认识它,理解它,应用它。老师相信你们在今后的学习中,经过自己的实践,一定会探索出大自然中的更多奥妙。

板书设计:

圆的认识

圆 心 0 在同圆内:

半 径 r r=d/2 或

直 径 d d=2r

圆的认识教学设计(篇5)

教学目标

1.使学生认识圆,知道圆的各部分名称。

2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点

理解和掌握圆的特征,学会用圆规画圆的方法。

教学难点

理解圆上的概念,归纳圆的特征。

教学过程

一、铺垫孕伏

(一)教师用投影出示下面的图形

1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

2.教师指出:我们把这样的图形叫做平面上的直线图形。

(二)教师演示

一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

2.小结引入:(出示铁丝围成的圆)这就是一个圆。圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)

二、探究新知

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

教师说明:圆是平面上的一种曲线图形。

3.通过具体__作,来认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次。

教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母 表示。

教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

(圆心到圆上任意一点的距离都相等)

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示。(教师在圆内画出一条半径,并板书:半径 )

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 来表示。(教师在圆内画出一条直径,并板书:直径 )

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的'长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的

长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

填表。

r(米)

0.24 1.42 2.6

d(米)

0.86 1.04

(四)圆的画法。

根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆。

1.学生自学

2.教师示范画圆。

3.教师归纳板书:

定半径

2.定圆心;

3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

4.学生练习

(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在__场画一个大圆圈做游戏,没有这么大的圆规怎么办?

三、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获?

四、课堂练习

(一)判断

1.画圆时,圆规两脚间的距离是半径的长度。( )

2.两端都在圆上的线段,叫做直径。( )

3.圆心到圆上任意一点的距离都相等。( )

4.半径2厘米的圆比直径3厘米的圆大。( )

5.所有圆的半径都相等。( )

6.在同一个圆里,半径是直径的 .( )

7.在同一个圆里,所有直径的长度都相等。( )

8.两条半径可以组成一条直径。( )

五、课后作业

(一)按下面的要求,用圆规画圆。

1.半径2厘米。

2.半径2.5厘米。

3.直径8厘米。

(二)怎样测量没有圆心的圆的直径?

圆的认识教学设计(篇6)

教学内容:

冀教版六年级数学上册第一单元第一课时

教学目标:

知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

理解在同一个圆内直径与半径的关系。

能力目标:让学生认识直径和半径的关系,能找出圆的对称轴。

转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。德育目标:让学生养成在交流、合作中获得新知的习惯。

教学重点:

探索出圆各部分的名称、特征及关系。

教学难点:

通过动手操作体会圆的特征。

教学过程:

(一)情景引入

出示课本的情景图,动物设计的汽车,思考兔博士的问题。

学生回答

师:你想过没有,车轮为什么要做成圆形?车轴又是安装在哪儿的?又是为什么?生答。

师:这一切,都跟圆的知识有关,这节课,让我们一起来认识圆(板书:圆的认识)

(二)探索新知

1、师:说说在生活中哪些地方能看到圆。

生:一些圆形钟面,纽扣是圆形的,硬币是圆形的,球(球是立体图形,把球从中间剖开得到的剖面才是圆形。圆也是一种平面图形。)

师:圆在生活中无处不在,古希腊的一位数学家曾经说过,在一切平面图形中,圆是最美的。

2、用一个瓶盖或圆柱体在纸上描出一个圆,并剪下来。

学生独立完成。

3按照书上的方法折一折,思考你有什么发现?

小组同学讨论,说出自己的看法。

教师进行总结。明确圆是轴对称图形,它有无数条对称轴,同时介绍直径和半径。4思考下面几个问题。

(1)在同一个圆里可以画多少条半径,多少条直径?

(2)在同一个圆里,半径的长度都相等吗?直径呢?

(3)同一个圆的直径和半径有什么关系?

(4)你还有什么发现?

师:说说你们小组的发现?

生汇报:

(1)同一个圆里可以画无数条半径,无数条直径。

师:有没有谁有不同意见?

生:没有。

(师板书:半径无数条直径无数条)

(2)师:你们还发现了什么?

生:半径都相等,直径都相等。

师:你量出你画的圆的半径是多少?其他同学呢?量直径的同学呢,有没有不同的意见。

师:怎么不相等?要使半径都相等,必须加上一个前提条件。(板书:在同一个圆里与等圆中)

(板书:都相等)

(3)你还有什么发现?

学生汇报,教师适时引导并小结。

(同一个圆的直径是半径的2倍,半径是直径的一半。谈话:你能用字母表示它们之间的关系吗?(板书:d=2r,r=d÷2)

(4)圆是轴对称图形。

师:为什么?(因为将圆对折后能完全重合)

师:它的对称轴是什么?(直径所在的直线是圆的对称轴。)

师:它有几条对称轴?(无数条)

三:课堂练习,巩固深化。

师:同学们掌握得真好,下面让我们来完成几道挑战题。

1、填写下表。

2判断练习,全班学生一起用手势表示自己的意见。(正确的举手,错的不举手)

(1)圆的直径是半径的2倍。

(2)要画直径是4厘米的圆,圆规两脚间的`距离是4厘米。

(3)半径2厘米的圆比直径3厘米的圆大。

(4)所有的半径都相等。

(5)两端都在圆上的线段叫做直径2、画圆。

3、解释与应用

车轮为什么做成圆的?车轴装在什么位置?为什么?

师:为什么车轮子要设计成圆形而不设计成方形或其它形状呢?

把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.

四:结课。

师:数学中也有很多美,只要你认真探究,善于发现你就能感受到美。

板书设计:圆的认识

在同一个圆半径——相等、无数条

中直径——相等、无数条

d=2rr=d/2

圆的认识教学设计(篇7)

单元教材分析:

这一单元的内容是圆,在这个单元中,教材安排了“圆的认识” 、“圆的周长和面积” 三个具体的内容,这三个内容由易到难,层层深入。

本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。

学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。

单元教学目标:

1.学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2.探索圆的周长与面积的计算方法中,获得探索问题成功的体验。

3.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

4.通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。

5.培养学生观察、比较、想象等能力,进一步发展学生的空间观念。

单元教学重点:

1.学生认识圆,知道圆的各部分名称。

2.掌握圆的特征及在同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

圆的认识(一)

教学目标:

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点:

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点:

理解圆上的概念,归纳圆的特征。

教材分析:

教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。

学情分析:

圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。

教学过程:

活动一:演示操作,揭示课题

师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)

活动二、动手操作,探究新知

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。 教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么? (圆心到圆上任意一点的距离都相等)

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径 )

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的.长度都相等。

(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。(教师在圆内画出一条直径,并板书:直径)

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一

个圆里的几条直径,看一看,所有直径的长度都相等吗? 教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1.P58 1

2.填表

(四)圆的画法。

1.学生自学,看书57页。

2.学生试画。

3.学生通过试画小结用圆规画圆的方法,注意的问题。

4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5.学生练习

(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置? 教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

活动三、实践与应用

(一)判断

1.画圆时,圆规两脚间的距离是半径的长度。( )

2.两端都在圆上的线段,叫做直径。( )

3.圆心到圆上任意一点的距离都相等。( )

4.半径2厘米的圆比直径3厘米的圆大。( )

5.所有圆的半径都相等。( )

6.在同一个圆里,半径是直径的。( )

7.在同一个圆里,所有直径的长度都相等。( )

8.两条半径可以组成一条直径。( )

(二)按下面的要求,用圆规画圆。

1.半径2厘米。

2.半径2.5厘米。

3.直径8厘米。

(三)怎样测量没有圆心的圆的直径?

活动四、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获?

板书设计

在同一个圆里有无数条半径,所有半径的长度都相等。

在同一个圆里,直径的长度是半径的2倍。 半径决定圆的大小,圆心决定圆的位置。

圆的认识教学设计(篇8)

教学目标

1.使学生在观察、操作、交流中认识圆的各部分名称与感受圆的基本特征,会用圆规画指定大小的圆;能应用圆的知识解释生活中的现象。

2.活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

3.进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

重点难点

1.认识圆的各部分名称。

2.感受圆的基本特征。

3.会用圆规画指定大小的圆。

教学难点:应用圆的知识解释生活中的现象。

教学准备:课件、各种不同的含有圆形的实物、剪刀、直尺、圆规。

教学过程

教学例1。

(一)感知生活中的圆。听,一滴雨水滴在平静的水面上,荡起一层层涟漪,看,是什么形状?

出示图片,问:这些物体上也都有圆,谁来指一指。生活中哪些地方还能看到圆?

圆在生活中随处可见,扮演着重要角色。有必要进一步研究——圆

(二)自主画圆。先请你想办法画出一个圆,并在小组里交流你是用什么画的?

(三)交流感受。你觉得圆和以前学过的平面图形有什么不同?

二、圆规画圆,认识圆的各部分名称。

教学例2。

(一)圆规画圆。

1.认识圆规。如果要画一个更大、更小或指定大小的圆,借助你手里物品上的圆还行吗?得有一个能调节大小的画圆工具——圆规。谁能给大家介绍介绍它?

2.尝试画圆。你能试着用圆规画一个圆吗?试试看。(师同步在黑板上画圆)

3.展示作品,归纳画法。

(1)展示完美作品。问:你是怎样用圆规画圆的?课件出示画圆步骤:

①把圆规的两脚分开,定好两脚间的距离;

②把有针尖的一脚固定在一点上;

③把装有笔尖的一只脚旋转一周。

(2)展示问题作品。强调画圆时的注意点。(定点,定长)

4.规范画圆。如果让你重新画一个圆,有信心画得更好吗?要让全班同学画的圆一样大,该怎么办呢?(脚距?厘米)

(二)认识圆的各部分名称。

1.圆心。师:画圆时,针尖固定的这一点,在圆的什么位置?你猜这一点叫什么?(板书:圆心)通常用大写字母O表示。(生标O)

2.半径。你能在圆内画一条线段表示圆规两脚间的距离吗?试一试。(指名板演)

小组交流:你是从哪画到哪的?(辨别圆内、圆上、圆外)

其实,连接圆心和圆上任意一点的线段是圆的半径,通常用小写字母r表示。板书:半径,r。(生标r)刚才画的圆半径是几厘米?如果要求画一个半径5厘米的圆,圆规两脚间的距离应为多少?

3.直径。

你能在圆内画一条线段将这个圆平均分成两份吗?画画看。(指名板演)。画好后在小组内说说你是怎样画的?

像这样通过圆心并且两端都在圆上的线段是圆的直径,通常用小写字母d表示。板书:直径,d。(生标d)刚才画的圆直径是几厘米?如果要求画一个直径5厘米的圆,圆规脚距应定为多少?(2.5厘米)。

4.练一练第1题。(课件出示)(以毫米作单位,要精确。)

三、合作探究,揭示圆的特征。

教学例3。

我们认识了圆心、半径、直径,其实,关于半径和直径还有许多奥秘呢,一起来探索好吗?

(一)合作探究:出示例3

师:先任意画一个圆,把它剪下来。(2分钟够不够?)

示:画一画,量一量,折一折,在小组里讨论:

(1)在同一个圆里可以画多少条半径?多少条直径?(课件反馈)

(2)在同一个圆里半径的长度都相等吗?直径呢?

(3)在同一个圆里半径与直径有什么关系?(课件反馈)

(4)圆是轴对称图形吗?它有几条对称轴?(对折引伸)

(二)汇报。(略)根据学生汇报板书。无数条,都相等,d=2r,r=

(三)你还有什么发现?在小组里交流。(你觉得对折时的折痕就是圆的什么?直径所在的直线就是圆的对称轴。)

五、回顾总结,赏析提升。

(一)通过这节课的学习,你有哪些收获?

(二)视频欣赏。后问:圆在建筑物中,艺术品中被广泛运用,大自然中也随处可见圆的身影。圆美吗?板书:圆

圆心(O)

同圆中半径(r)——无数条,分别都相等,d=2rr=d

直径(d)

作业实践活动

(四)练习:1.判断。

2.练习十七第1题。(说说是怎样想、怎样算的)。

3.练习十七第2题。(提醒:要在圆中标出相关条件。)

四、拓展延伸,感受生活中的数学。

请大家看动画片,高兴不?

为什么车轮要做成圆形?车轴要装在哪儿?

圆的认识教学设计(篇9)

一、教学目标:

1、让学生在活动中认识圆,知道圆的各部分名称,掌握圆的特征,理解和掌握在同一个圆里半径与直径的关系;

2、学会用工具画圆;

3、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;

二、教学重难点:

理解和掌握圆的特征

三、教学准备:

纸、剪刀、圆规、课件

四、教学过程:

(一)、创设情景,激发兴趣

1、(大屏幕展示高年级同学课间投篮比赛情境图)

2、师质疑:你们认为安排这样的队形公平吗?大家有什么好的建议?

3、生自由回答,师相机点拨。

4、师:今天我们就来学习有关圆的知识。(板书:圆的认识)

(二)、恰当引导,自主学习

1、师:你们认为圆和我们以前学过的平面图形有什么区别?

2、(师板书:圆是一种由曲线围成的封闭图形)

3、生齐读三遍。理解意思。

(三)、师生交流,感受新知

1、找身边的圆。

2、师:(出示教具圆规)这是什么?它表面上有圆吗?(生边看边答。)

3、在你的纸上画一圆。

4、师抽生在黑板上画圆。

没成功:他为什么没画成功?(1是没有固定好有针的那个脚;2是没固定好圆规两脚间的距离;3是可能不太好旋转;4是黑板比较滑,不太好固定)

5、师示范画圆。

师:刚才同学们总结得很好,看来,用一只手固定住圆规的针尖很关键。看老师画。

师:圆规固定不动的这个脚,也就是这个点,对画圆至关重要!谁能给它起个名字?圆心一般用字母O表示。点出你所画圆的圆心,标上字母O。一个端点在圆心【板书:圆心】,另一个端点在圆上【板书:圆的曲线上、圆边上、圆的边缘上、圆的弯线上】

师:我们把……统称为圆上【板书:圆上】

师:只能画这一条吗? 生:还能再画!

师:再画一条。还能再画吗?再画一条。还能画吗?到底能画多少条?

师:所画出来的表示圆规两脚间距离的这几条线段,一个端点都在哪?另一个端点呢?

生:一个端点都在圆心,另一个端点都在圆上。

师:我们给这样的线段起个名字吧!

师:【板书:半径(r)】半径一般用字母r表示,在你的圆上标上r。谁能用自己的话说一说什么叫半径。(一个端点在圆心,另一个端点在圆上的线段就叫半径。)

师:在同一个圆里,半径有多少条?长度怎样?

生:在一个圆里,半径有无数条,长度都相等。

师:既然半径有无数条,那么在围成圆的这条曲线上,像这样的端点能找出多少个?

生:能找出很多(无数)个。

师:(在三个点的旁边紧密地多点几个点)这行吗?

师:正是这无数个点紧紧地手拉手,靠在一起,连接成一条完美的曲线,围成了圆。

师:请同学们拿出剪刀,剪下你所画的圆。

师:这是一个平展的圆,上面只有圆心和半径,请大家像老师这样把它对折,用食指触摸折叠的地方,打开。多了什么?

生:一条折痕。【痕迹、印子、折痕】

师:我们把对折产生的这条线段、这条痕迹统称为折痕。

师:朝不同的方向再对折一次,用手触摸折痕,打开,请同学们照这样再做几次。

生:折圆

师:原本平展的圆上,多了很多很多的折痕,在这些折痕里藏着许多许多关于圆的奥秘,同学们想发现吧?请同学们在4人小组里围绕折痕,展开讨论,充分发表自己的见解,然后由组长记下“我们的发现”。汇报发现的时候,由组长上来发言,组员可以补充。但每一组只能用一句话汇报一个自己认为最精彩的发现,别的组发表过的观点,其他组便不再重复,开始讨论。

(1)、(小组合作,讨论问题)

(2)、各小组汇报讨论结果。

(3)、课堂小结:下面我们来整理一下我们的思路。今天,我们认识了圆。【板书:圆的认识】一开始,我们学习了画圆,你觉得画圆要注意什么? (定点、定长)圆是由无数个特定的点手拉手围成的优美曲线。半径和直径有助于我们进一步认识圆。半径的两个端点分别在哪?直径呢?在同一个圆里,半径有多少条,长度怎样?直径呢?直径和半径有什么关系?

师:同学们在回过头去,你现在知道为什么投篮比赛要站成圆形了吗?谁来说说为什么?

(四)、巩固练习,问题解决

1、判断直径 、半径

2、[媒体]填一填:

3、[媒体]再请你辩一辩:下面各句话对吗?

4、画圆

请你画一个半径为4厘米的圆

画的圆半径为4厘米的同学,说说你是怎么画的?简单地说你是怎么确定半径为4厘米的?

师:下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?

问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)

问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)

问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)

师:我已经发现,很多同学都笑了,这说明他心里有底了。每个同学选择一个自己最感兴趣的课题来研究。

(五)、课堂小结,课外延伸

发挥想象,灵巧操作

(1)、给你两枚钉子和一条一定长度的绳子,你有办法画出圆来吗?

(2)、任意画出一个圆,再标出圆心、半径、直径。(字母表示

师:学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!

圆的认识教学设计(篇10)

教学目标:

1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

教学重难点:掌握圆的特征及画圆的方法。

教学过程:

一、创设情境,导入新课

(1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

(2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

(3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

【设计意图】

数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

二、自主探索,交流互动

1、感悟画圆法

师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

……

2、尝试用圆规画圆

师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

(生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

……

师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

(1)确定圆规两脚间的距离

(2)把针尖固定在一个点上

(3)把另一只脚旋转一周

3、画定长为2厘米的圆

师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

【设计意图】

把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

4、剪一剪、折一折

(1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?

小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

(2)认识直径。师:我们任取一条折痕,观察它有什么特点?

小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。

(3)认识半径。师:画面中的线段有什么特点?

小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

(4)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

b在剪成的圆里你能画多少条直径?

c直径与半径有什么关系?

小组讨论交流

小结、板书

【设计意图】

在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

三、自练反馈,巩固练习

(1)填一填:

①同一圆里有( )条直径,有( )条半径。

②在同一圆里,直径与半径的比是( )。

③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。

(2)判一判,对的打“√”错的打“×”。

①两端都在圆上的线段叫圆的直径。 ( )

②圆心到圆上任意一点的距离都相等。 ( )

③直径是半径的2倍。 ( )

(3)三题中选一题做:

①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

【设计意图】

《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

四、回顾总结

师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

    600149